top of page

CONCEITOS, TIPOS E APLICAÇÕES (Clayton Castro)

  • integradorp3
  • 10 de out. de 2015
  • 6 min de leitura

Em matemática e ciência da computação, grafo é o objeto básico de estudo da teoria dos grafos. Tipicamente, um grafo é representado como um conjunto de pontos (vértices) ligados por retas (as arestas). Dependendo da aplicação, as arestas podem ser direcionadas e são apresentadas por “setas”.

Definições de Grafos

Grafo direcionado: Consiste num conjunto V de vértices, um conjunto E de arestas e mapas s, t: E -> V, onde s(e) é a fonte e t(e) é o alvo da aresta direcionada e.

Os Grafos não direcionados são dados por: um conjunto V de vértices, um conjunto E de arestas e uma função w : E -> P(V) que associa a casa aresta um subconjunto de dois ou de um elemento de V, interpretado como os pontos terminais da aresta.

Tipos de Grafos

  • Grafo simples é um grafo não direcionado, sem laços e que existe no máximo uma aresta entre quaisquer dois vértices (sem arestas paralelas). No grafo de exemplo, (1, 2, 5, 1, 2, 3) é um caminho com comprimento 5, e (5, 2, 1) é um caminho simples de comprimento 2.

  • Grafo completo é o grafo simples em que, para cada vértice do grafo, existe uma aresta conectando este vértice a cada um dos demais. Ou seja, todos os vértices do grafo possuem mesmo grau. O grafo completo de n vértices é frequentemente denotado por Kn. Ele tem n(n-1)/2 arestas (correspondendo a todas as possíveis escolhas de pares de vértices).

  • Grafo nulo é o grafo cujo conjunto de vértices é vazio.

  • Grafo vazio é o grafo cujo conjunto de arestas é vazio.

  • Grafo trivial é o grafo que possui apenas um vértice e nenhuma aresta.

  • Grafo regular é um grafo em que todos os vértices tem o mesmo grau.

  • Multigrafo é um grafo que permite múltiplas arestas ligando os mesmos vértices (arestas paralelas).

  • Laço (loop) num grafo ou num digrafo é uma aresta e em E cujas terminações estão no mesmo vértice.

  • Pseudografo é um grafo que contém arestas paralelas e laços.

  • Ciclo (ou circuito) é um caminho que começa e acaba com o mesmo vértice. Ciclos de comprimento 1 são laços. No grafo de exemplo, (1, 2, 3, 4, 5, 2, 1) é um ciclo de comprimento 6. Um ciclo simples é um ciclo que tem um comprimento pelo menos de 3 e no qual o vértice inicial só aparece mais uma vez, como vértice final, e os outros vértices aparecem só uma vez. No grafo acima, (1, 5, 2, 1) é um ciclo simples. Um grafo chama-se acíclico se não contém ciclos simples.

  • Ponto de articulação ou Vértice de corte é um vértice cuja remoção desliga um grafo. Uma ponte é uma aresta cuja remoção desliga um grafo. Um componente biconectado é um conjunto máximo de arestas tal que qualquer par de arestas do conjunto fazem parte de um ciclo simples comum. O contorno de um grafo é o comprimento do ciclo simples mais curto no grafo. O contorno de um grafo acíclico é, por definição, infinito.

  • Árvore é um grafo simples acíclico e conexo. Às vezes, um vértice da árvore é distinto e chamado de raiz. As árvores são muito usadas como estruturas de dados em informática (veja estrutura de dados em árvore).

  • Floresta é um conjunto de árvores; equivalentemente a uma floresta, em algum grafo acíclico.

  • Subgrafo de um grafo G é um grafo cujo conjunto dos vértices é um subconjunto do conjunto de vértices G, cujo conjunto de arestas é um subconjunto do conjunto de arestas de G, e cuja função w é uma restrição da função de G

  • Subgrafo gerador é aquele obtido pela remoção de uma ou mais arestas de um outro grafo, dizemos então que este novo grafo obtido é gerador do primeiro,

  • Subgrafo induzido é obtido pela remoção de vértices e consequente das arestas relacionadas com ele de um outro grafo, dizemos que este novo grafo é um grafo induzido do original.

  • Grafo parcial de um grafo G é um subgrafo com o mesmo conjunto de vértices que G. Uma árvore parcial é um grafo parcial que é árvore. Todo grafo tem pelo menos uma árvore parcial.

  • Clique em um grafo é um subgrafo que também é um grafo completo. No grafo do exemplo acima, os vértices 1, 2 e 5 formam um clique.

  • Conjunto independente em um grafo é um conjunto de vértices não adjacentes entre si. No exemplo acima, os vértices 1, 3 e 6 formam um conjunto independente e 3, 5 e 6 são outro conjunto independente.

  • Grafo planar é aquele que pode ser representado em um plano sem qualquer intersecção entre arestas. O grafo do exemplo é planar; o grafo completo de n vertices, paran> 4, não é planar.

  • Caminho é uma sequência de vértices tal que de cada um dos vértices existe uma aresta para o vértice seguinte. Um caminho é chamado simples se nenhum dos vértices no caminho se repete. O comprimento do caminho é o número de arestas que o caminho usa, contando-se arestas múltiplas vezes. O custo de um caminho num grafo balanceado é a soma dos custos das arestas atravessadas. Dois caminhos são independentes se não tiverem nenhum vértice em comum, exceto o primeiro e o último.

  • Caminho euleriano em um grafo é o caminho que usa cada aresta exatamente uma vez. Se tal caminho existir, o grafo é chamado traversável. Um ciclo euleriano é um ciclo que usa cada aresta exatamente uma vez.

  • Caminho hamiltoniano em um grafo é o caminho que visita cada vértice exatamente uma vez. Um ciclo hamiltoniano é um ciclo que visita cada vértice uma só vez. O grafo do exemplo contém um caminho hamiltoniano. Enquanto determinar se um dado grafo contém um caminho ou ciclo euleriano é trivial, o mesmo problema para caminhos e ciclos hamiltonianos é extremamente árduo.

  • Lema do aperto de mãos diz que se os convidados de uma festa apertarem as mãos quando se encontrarem pela primeira vez, o número de convidados que apertam a mão um número ímpar de vezes é par. Também em grafos não direcionados a soma dos graus de todos os vértices é igual ao dobro do número de arestas.

  • Grafo bipartido é o grafo cujos vértices podem ser divididos em dois conjuntos, nos quais não há arestas entre vértices de um mesmo conjunto. Para um grafo ser bipartido ele não pode conter circuitos de comprimento ímpar.

  1. Se um grafo G é bipartido, todo o circuito de G possui comprimento par.Sejam V1 e V2 os dois conjuntos em que, de acordo com a definição de grafo bipartido, se particiona V(G). Toda a aresta de G conecta um vértice em V1 com outro em V2. Assim sendo, se X for um vértice de V1, para “voltar” a esse vértice terá de se ir a V2 e voltar a V1 um número indeterminado de vezes, e de cada vez serão percorridas duas arestas, uma de um vértice em V1 para um vértice em V2 e outra de um vértice em V2 para um vértice em V1. Logo, o número de arestas a percorrer será par, ou seja, o comprimento do circuito é par.

  2. Se todo o circuito de um grafo G possui comprimento par, então o grafo é bipartido.Seja G um grafo em que todo o circuito tem comprimento par, e seja X um vértice de G. Denotemos por V1 o conjunto formado por X e por todos os vértices cuja distância a X é par. Seja V2 = V(G)\V1 (isto é, o conjunto formado pelos vértices de G que não pertencem a V1). Pretende mostrar-se que não existe qualquer aresta que conecte vértices de V1 ou vértices de V2. Suponhamos a existência de tal aresta, isto é, suponhamos a existência de dois vértices em V1 (ou V2), digamos Xi e Xj, conectados por uma aresta. Ora existe já um caminho de comprimento par entre Xi e Xj, já que existem caminhos, ambos de comprimento par (ou ímpar, no caso de Xi e Xj pertencerem a V2), entre Xi e X e entre X e Xj. Se a esse caminho juntarmos a aresta {Xi;Xj} obtemos um circuito de comprimento ímpar o que contraria a hipótese de apenas existirem circuitos de comprimento par.

  • Grafo bipartido completo é o grafo bipartido, cujo qualquer vértice do primeiro conjunto é adjacente a todos vértices do segundo conjunto

  • Grafo k-partido ou grafo de k-coloração é um grafo cujos vértices podem ser particionados em k conjuntos disjuntos, nos quais não há arestas entre vértices de um mesmo conjunto. Um grafo 2-partido é o mesmo que grafo bipartido.

  • Emparelhamento de grafos consiste em partir o grafo em conjuntos de vértices a qual não compartilham nenhuma aresta entre eles.

  • Teorema das quatro cores é baseado no problema das cores necessárias para se colorir um mapa sem que os países vizinhos compartilhem da mesma cor. Transformando o mapa em um grafo pode-se provar que pode-se representar qualquer mapa (um grafo planar) com apenas 4 cores (4 partições).



APRENDA MAIS!!

Pesquisado em:

https://pt.wikipedia.org/wiki/Teoria_dos_grafos

https://www.youtube.com/watch?v=PXYT3opZIyc


 
 
 

Comentários


Posts Destacados
Posts Recentes
Procure por Tags
Siga
  • Google+ Long Shadow
  • Facebook Long Shadow
  • LinkedIn Long Shadow
  • Twitter Long Shadow

Entre em Contato

Tel: (83)8715-6206

integrador.p3@gmail.com

  • Google+ Long Shadow
  • Facebook Long Shadow
  • LinkedIn Long Shadow
  • Twitter Long Shadow

© 2015 por Grupo Integrador Ciências da Computação Segundo Período

Seus detalhes foram enviados com sucesso!

bottom of page